Comparer les frottements solides aux frottements aérodynamiques pour une voiture permet de voir qu’en fonction de la vitesse, la proportion n’est pas du tout la même. Cet article illustre de façon numérique la puissance des forces de frottement et leurs importances respectives selon la vitesse.

Le but est ici de montrer à quel point les frottements aérodynamiques prennent de l’importance à haute vitesse.

puissance frottements aerodynamiques solide

Modélisation des frottements…

Frottements solides et aérodynamiques pour la voiture

puissance forces frottement voiture exemple 0

Il suffit du poids à vide et du SCx pour déterminer la puissance nécessaire en fonction de la vitesse ! Il s’agit ici d’une Laguna 1 2.0 essence.

Poids à vide de la voiture (Laguna) :

m = 1300kg

Coefficient aérodynamique Scx :

S.Cx = 0.648m² (donnée constructeur)

Expression des puissances

Puissance des frottements aérodynamiques

Pa : Pa = 1/2.ρ.S.Cx.v3

ρ : densité de l’air (dépend de la température. On utilise : 1,186kg par mètre cube à 25°C)

Puissance des frottements solides Ps :

Ps = m.g.k.v

Unités

vitesse : m/s,

puissances Pa et Ps : W.

Conversions des unités de puissance et vitesse : 1CV = 735.5W et 1m/s = 3.6km/h

Frottements solides et aérodynamiques à 10 km/h

Déterminons les valeurs des frottements solides et aérodynamiques à faible vitesse (10 km/h) et à 25°C (ce qui correspond à une densité de l’air de 1.186kg par mètre cube).

Puissance des frottements aérodynamiques Pa :

Pa = 0.5 x 1.186 x 0.648 x (10/3.6)3

Pa = 6.9W

Puissance des frottements solides Ps :

Pour la masse, on ajoute la masse du conducteur (70kg par exemple, d’où 1370kg total) :

Ps = (1300+70) x 9.81 x 0.015 x (10/3.6)

Le coefficient k vaut autour de 0,015 pour la plupart des véhicules. Il a été déterminé expérimentalement pour ce modèle (Laguna 1)

Ps = 560W

La puissance totale vaut la somme :

P = Pa + Ps = 567W

Les frottements solides sont prépondérants à 10 km/h (99% du total).

FROTTEMENTS SOLIDES ET AÉRODYNAMIQUES À 130 KM/H

Refaisons le même calcul pour une vitesse de 130km/h pour voir la répartition des frottements.

Pa = 18.1 kW

Ps = 7.28kW

En additionnant Pa et Ps, on obtient P :

P = 25.4kW (35CV)

A 130 km/h, les frottements aérodynamiques sont prépondérants (71% du total). Une puissance de 35CV est nécessaire pour rouler à 130 km/h en terrain plat. Pour rouler à 10 km/h en terrain plat, 567W sont nécessaires alors que pour maintenir 130 km/h, il faut 25.4 kW ! Cette valeur peut servir de repère pour la plupart des voitures. A titre indicatif, vu le rendement typiques des moteurs (25%), c’est alors une centaine de kW de chaleur dissipés dans l’environnement par le moteur et le déplacement même du véhicule.

frottements aerodynamiques solides voiture

Frottements aérodynamiques…

Une voiture qui roule à 250km/h dissipe de l’ordre du Mégawatt dans l’environnement !

Un cycliste développe une puissance d’environ 400W à 40km/h. Ci dessous, on prend conscience de l’ordre de grandeur des puissances dissipées par des appareils courants et une voiture typique à 130 km/h :

puissance forces frottement voiture exemple 1

Ordres de grandeurs de puissances dissipées par différents appareils

La voiture est probablement ce qu’on utilise quotidiennement et qui fait appel aux plus grandes puissances.